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Previous TCS and overall performance

TCS/mod

Neutral Beam considerations

Coaxial Slow Source addition



LSX/mod was half-size version of TCS to allow for acceleration section
TCS utilized 2 of the 1.25-m long, 80-cm diameter LSX quartz tubes
Joined with O-ring sealed plastic section for central diagnostic access

TCS
RMF generation & sustainment

TCS Facility
LSX/mod

(formation & ‘acceleration’)



Schematic of TCS Confinement Schematic of TCS Confinement 
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Standard Model of RMF Current 
Drive in FRCs

RMF self-consistently penetrates just far enough, ∆r ~ 
(Be/µo)/neeωrs to maintain the diamagnetic current.  Poloidal 
flux will increase as long as the RMF torque on the electrons 
exceeds the torque due to electron-ion drag (resistivity)
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RMF Penetration MoviesRMF Penetration Movies

Vacuum calculation in 
lab frame of reference

Plasma calculation in 
RMF frame of reference. 
(Calculation needs to start 
from already formed FRC)

Plasma measurement in 
RMF frame of reference



Long Pulse Lengths Sustained by 
Recycling

After first 0.5 msec, plasma conditions mostly independent of fill gas pressure 
(and to some extent composition).
After ~4 msec, transition seen to higher performance mode (lower overall 
resistivity).
No sign seen of tilting, but rotational n=2 distortion will develop due to overall 
RMF induced rotation as Bω (which provides strong inward stabilizing force) 
decreases.
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Resistivities Inferred from 
Double RR Model
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Double RR Resistivity Values
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Profile Changes & Bz Frequency 
Content During Long Pulse Operation
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TCS Temperature (and Flux) Limited in 
Present Experiments – at least partially by impurities

Need to increase φp from ~2 
mWb flux in TCS to ~6 mWb 
and Be from 15 to 50 mT for 
efficient TNBI trapping.  This 
will happen automatically with 
RMF formation if temperature 
increases.

Applying more RMF power 
in present device results in 
initially higher Tt and Be.  ne
remains proportional to Bω,
but temperature drops 
rapidly as Prad increases.
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Modifications Underway on TCS to Reduce 
Impurity Level and Radiative Losses

Larger, metal input section to avoid translated FRC contact with quartz.
Protective flux rings (possibly tantalum coated) under quartz RMF drive section.
Elimination of “O-rings” to allow bakeout and discharge cleaning.
Combination of Ti-gettering and wall conditioning (siliconization?).
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Reduction of Prad will allow examination of non-radiatively limited τE.



Formation of High Beta Plasmas
It is extremely difficult to form high β plasmas if Ein occurs on same timescale as 
Bp

2/2µo build-up.  Plasma pressure must always track Bp
2/2µo and this can be mostly n 

rather than T unless thermal losses are small.
– Impurity radiation imposes significant barrier to temperature rise below 100 eV.
– Strong shock heating or fast resistive dissipation in theta-pinches, and to some extent in 

spheromak merging, can overcome this barrier.

Rotating Magnetic Fields can form low density FRCs, but the 100 eV temperature 
barrier can only be exceeded if extreme care is taken in minimizing C and O impurities.

– Theta-pinch formed, translated, and expanded FRCs can provide initial high temperatures if 
wall contact can be minimized.

– Neutral beams can independently heat and sustain FRCs, but available powers are low.

The Coaxial Slow Source (CSS) is an old idea for forming FRCs on slower timescales.
– Since Pabs ∝ η(Bp/r)2 and Prad ∝ nimpne ∝ fi(Bp

2/Tt)2, if we rely on ohmic heating, the poloidal 
field must be increased slowly to give the temperature time to increase and avoid radiative 
collapse.

– We can start at low density using RMF initiation.



Tangential Neutral Beam Injection can 
Provide Current Drive near Field Null

FRC must have sufficient flux to confine azimuthal high-
energy ion velocity inside field null.

Mostly axial injection can result in even larger excursions 
beyond separatrix, and will always result in wall contact for 
high xs FRCs.

Tangential injection is most effective near, or slightly 
outside field null.

High-energy ions will spread axially, even with minimal 
initial axial velocity component.



TNBI near Field Null (Need 
about 5 mWb of flux)
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Coaxial Slow Source (CSS) can 
Add Energy and Increase Flux.

Two Modes of Operation:
– Fast, high voltage:  t1/4 << τL/R of FRC.

» All inner coil flux will be transferred to FRC.
– Slow, multi-turn coils:  t1/4 >> τL/R of FRC.

» FRC current will be equal to (V/N)coil/RFRC.



CSS Flux Build-Up & Sustainment 
of RMF Generated FRC
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SPICE Circuit Modeling
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SPICE CSS calculation for 1 mΩ
FRC driven by 40-turn, 5 kV solenoid

Outer coil – 40 turns

Flux rings 
(2mΩ)

Plasma 
(1mΩ)

Inner solenoid 
– 40 turns

Initial bias (I2) applied so that there is ~zero field 
inside flux rings at time of plasma initiation.
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CSS 2-D Calculation



Summary
TCS has formed and maintained FRCs using RMF, but the 
radiation levels are high and the temperatures low.
RMF drive results in high FRC edge resistivities, but may be 
very useful for stabilizing instabilities and producing low 
interior resistivities.  It is probably not a stand alone current 
drive mechanism.
TCS/mod is being constructed to provide a clean, bakable 
vacuum system.
Both TNBI and flux core additions are being considered for 
future utilization.


